High-resolution photoluminescence measurement of the isotopic-mass dependence of the lattice parameter of silicon

A. Yang,¹ M. Steger,¹ H. J. Lian,¹ M. L. W. Thewalt,¹ M. Uemura,² A. Sagara,² K. M. Itoh,² E. E. Haller,³ J. W. Ager III,³

S. A. Lyon,⁴ M. Konuma,⁵ and M. Cardona⁵

¹Department of Physics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

²Keio University and CREST-JST, Yokohama 223-8522, Japan

³University of California Berkeley and LBNL, Berkeley, California 94720, USA

⁴Princeton University, Princeton, New Jersey 08544, USA

⁵Max-Planck-Institut für Festkörperforschung, 70569 Stuttgart, Germany

(Received 17 October 2007; revised manuscript received 7 January 2008; published 10 March 2008)

We have studied the dependence of the lattice parameter of silicon on isotopic mass, using high-resolution photoluminescence spectroscopy to detect splittings of the shallow donor bound exciton transitions in epitaxial layers of either isotopically enriched ²⁸Si or ³⁰Si grown on silicon substrates of natural isotopic composition. The slight lattice parameter mismatch between the isotopically enriched epitaxial layer and the natural silicon substrate induces a biaxial strain in the epitaxial layer, which results in a splitting of the hole states in the bound exciton. This can be detected with remarkable precision, especially in the highly enriched ²⁸Si epilayers, where the bound exciton lines are extremely sharp.

DOI: 10.1103/PhysRevB.77.113203

PACS number(s): 78.55.Ap, 71.35.-y, 71.70.Fk

I. INTRODUCTION

The effect of isotopic mass on the lattice parameter in single crystals of diamond, silicon, and germanium has been the subject of numerous experimental and theoretical studies. Silicon is of particular interest due to its use for the Avogadro project,¹ in which an accurate determination of the Avogadro constant will be made and will lead to a redefinition of the kilogram. Although there have been several theoretical investigations²⁻⁴ of the isotopic mass dependence of the lattice parameter of silicon, predictions of the strength of the isotopic effect vary significantly. An experimental study was done, in which the temperature dependence of the isotopic effect was determined for Si and Ge for temperatures between 30 and 300 K, and it was shown that the isotopic effect on the lattice parameter increases with decreasing temperature.^{5,6} A subsequent study by Wille *et al.*⁷ showed that the difference does not increase monotonically as T is lowered, but in fact, there exists a point above 0 K at which the isotopic effect is strongest. That study was done using a sample consisting of epitaxial ³⁰Si grown on natural silicon (^{nat}Si), and the lattice mismatch of order 10^{-5} was measured using Bragg backscattering of highly monochromatic synchrotron radiation.

In the present study, we have employed a different approach for the measurement of the isotopic effect on the lattice parameter of silicon. The lattice mismatches for epitaxial ²⁸Si grown on ^{nat}Si (henceforth ²⁸Si/^{nat}Si) and epitaxial ³⁰Si grown on ^{nat}Si (henceforth ³⁰Si/^{nat}Si) have been measured using high-resolution photoluminescence (PL) spectroscopy of shallow donor bound exciton (BE) transitions.

PL spectroscopy of impurity BE transitions is a topic that has been studied in great detail, but has only recently been applied to the determination of the isotopic mass dependence of the lattice parameter of silicon.⁸ This technique has, however, been previously used to measure lattice mismatches of order 10⁻⁵ for epitaxial layers of undoped GaAs grown on doped GaAs substrates.⁹ In this Brief Report, we provide corrected values of the lattice mismatch for the ²⁸Si/^{nat}Si samples, which were subjected to a numerical error in our preliminary study.⁸ We also present results for the lattice mismatch of ³⁰Si/^{nat}Si determined using PL spectroscopy, and find it to be consistent with our results for ²⁸Si/^{nat}Si.

Studies of silicon isotope effects on indirect band gap transitions had long been delayed due to the lack of suitable samples. In the first such PL study, Karaiskaj *et al.*¹⁰ observed significantly sharper BE transitions in the no-phonon region in highly enriched ²⁸Si as compared to ^{nat}Si, even though the ²⁸Si sample was of only moderate chemical purity $([B] \sim 7 \times 10^{14} \text{ cm}^{-3} \text{ and } [P] \sim 7 \times 10^{13} \text{ cm}^{-3})$. In ^{nat}Si, the no-phonon phosphorus BE transition has a linewidth of 0.041 cm⁻¹ full width at half maximum (FWHM), whereas the observed linewidth of the same transition in the ²⁸Si sample was 0.014 cm⁻¹, essentially identical to the maximum available instrumental resolution of the Fourier transform spectrometer used in the study. The apparent inhomogeneous isotope broadening inherent in ^{nat}Si was attributed to statistical fluctuations of the isotopic composition within the effective radius (\sim 3.5 nm) of the bound exciton. In the same study, it was also noted that there exists a 0.92 cm⁻¹ decrease in the indirect band gap energy of highly enriched ²⁸Si as compared to ^{nat}Si. Additionally, shifts of the wave-vectorconserving phonon energies were also observed.

In order to overcome the limitations of the Fourier transform spectrometer, an apparatus for photoluminescence excitation (PLE) spectroscopy based on a tunable single frequency laser source with submegahertz resolution was developed to achieve a significant increase in instrumental resolution. PLE spectra revealed much sharper P BE and B BE transitions—linewidths as narrow as $\sim 0.0012 \text{ cm}^{-1}$ FWHM were observed in newer bulk ²⁸Si single crystal samples of improved chemical purity and higher isotopic enrichment.^{11,12}

II. EXPERIMENT

Due to the costs and difficulties associated with growing bulk Si crystals of high isotopic enrichment, chemical purity, and crystalline perfection, epitaxial layers are often grown as a way of providing a sample of the material for characterization purposes. Two samples of epitaxial layers of ²⁸Si and one of epitaxial ³⁰Si, grown on ^{nat}Si (92.23% ²⁸Si, 4.67% ²⁹Si, and 3.10% ³⁰Si) substrates, were made available for the present study. The ²⁸Si epitaxial layers (of thickness $\sim 5 \ \mu m$) were grown from silane enriched to 99.9%, and deposited by chemical vapor deposition on floating-zone grown high purity ^{nat}Si(001) substrate material. The epitaxial ³⁰Si sample, which has an isotopic enrichment of 93.7% (as measured by secondary ion mass spectrometry), consists of an $\sim 16 \ \mu m$ thick layer of ³⁰Si grown by liquid phase epitaxy on a floating-zone grown high purity ^{nat}Si(111) substrate. This is the same sample that was used in the earlier Bragg scattering study.7

Samples were loosely mounted (to avoid strain) and immersed in a superfluid liquid helium bath at a temperature of ~1.5 K. Excitation was provided by either the 532 nm line of a frequency-doubled Nd: YVO₄ laser or a 1047 nm diodepumped Nd: YLF laser for bulk excitation. Spectra were collected with a Bomem DA8 Fourier transform interferometer using a liquid-nitrogen-cooled germanium photoconductive detector. The maximum instrumental resolution used in this study was ~0.005 cm⁻¹.

III. RESULTS AND DISCUSSION

A high-resolution PL spectrum of the no-phonon region for the first epitaxial ²⁸Si sample, which we refer to as ²⁸Si/^{nat}Si-1, is shown in Fig. 1. The P BE transition for the ²⁸Si epilayer is split by 0.149(2) cm⁻¹, with an offset from the bulk ²⁸Si P BE transition energy of 9274.180 cm⁻¹ (represented by the dashed line). Fig. 1 also shows the ^{nat}Si P BE transition, which appears 0.92 cm⁻¹ above the P BE energy for bulk ²⁸Si due to the difference in band gap energy between the two materials.

In Fig. 2, a high resolution PL spectrum of the no-phonon region for the second epitaxial ²⁸Si sample, which we refer to as ²⁸Si/^{nat}Si–2, reveals a 0.148(4) cm⁻¹ splitting of the ²⁸Si P BE transition, which is in good agreement with the splitting measured for ²⁸Si/^{nat}Si–1. In addition to phosphorus, the ²⁸Si/^{nat}Si–2 sample also contained a small amount of the slightly deeper donor arsenic, which also exhibited an ~0.148 cm⁻¹ splitting of the As BE transition. The sharpness of the BE transitions in the highly enriched ²⁸Si material makes it possible to measure these small splittings with great precision.

For the ³⁰Si/^{nat}Si sample, a 2.61(6) cm⁻¹ splitting of the no-phonon P BE transition in the ³⁰Si epitaxial layer was observed, as shown in Fig. 3. The shift in P BE transition energy between the ³⁰Si epilayer and the ^{nat}Si substrate is consistent with the 16.9 cm⁻¹ difference in band gap energy between bulk ^{nat}Si and bulk ³⁰Si.¹³ We also note that the

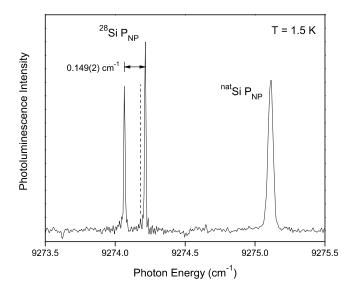


FIG. 1. This high-resolution (0.015 cm^{-1}) photoluminescence spectrum of the no-phonon region for the sample ${}^{28}\text{Si}/{}^{\text{nat}}\text{Si}-1$, collected at 1.5 K, shows a $0.149(2) \text{ cm}^{-1}$ splitting of the no-phonon P BE (P_{NP}) transition in the ${}^{28}\text{Si}$ epilayer. The energy of this transition for bulk ${}^{28}\text{Si}$ is represented by the dashed line at 9274.180 cm⁻¹. Also shown is the no-phonon P BE transition in the ${}^{\text{nat}}\text{Si}$ substrate, which appears 0.92 cm⁻¹ above the bulk ${}^{28}\text{Si}$ transition.

induced strain is not completely contained within the epilayer, but, in fact, there is a small amount in the substrate as well, which is evidenced by the 0.18(3) cm⁻¹ splitting of the ^{nat}Si P BE transition. The ratio of the splitting for the ³⁰Si epilayer compared to the ^{nat}Si substrate is ~15:1, whereas the ratio of the specified substrate thickness to epilayer thickness is ~31:1. This discrepancy may be due to variations in the thickness of the epilayer. It is also worth noting that the higher energy ³⁰Si P BE component is not symmetric, with a

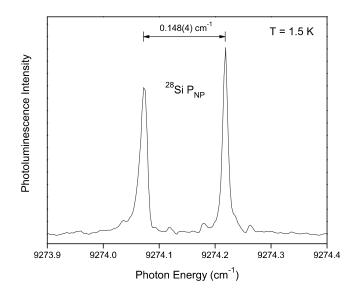


FIG. 2. The 0.148(4) cm⁻¹ splitting of the ²⁸Si no-phonon P BE transition for the sample ²⁸Si/^{nat}Si-2 is shown in this photoluminescence spectrum, collected at 1.5 K with an instrumental resolution of 0.005 cm⁻¹.

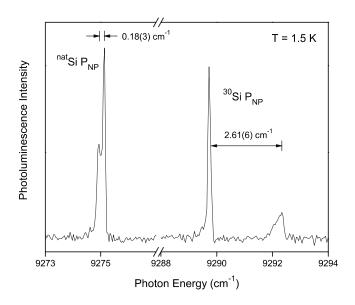


FIG. 3. The 2.61(6) cm⁻¹ splitting of the ³⁰Si P BE no-phonon transition for the ³⁰Si/^{nat}Si sample is shown in this photoluminescence spectrum, collected at 1.5 K with an instrumental resolution of 0.06 cm⁻¹. The 0.18(3) cm⁻¹ splitting of the ^{nat}Si P BE nophonon transition in the substrate is also shown.

possible reason for the asymmetry being the existence of partially relaxed regions in the ³⁰Si epitaxial layer, which is consistent with the observed distribution being biased toward lower energy, as this would correspond to a smaller splitting associated with partial relaxation. We assume that the peak of this line corresponds to the unrelaxed condition; therefore, the peak position is used to determine the splitting.

The hydrostatic component of the biaxial strain causes a shift of the band gap energy, while the shear component lifts the degeneracy of the light and heavy hole bands at the valence band maximum. This results in a twofold splitting of the donor BE ground state, corresponding to the two observed transitions. For the previous paper,⁸ the splitting of the hole states in the BE was taken to be equal to the free hole splitting, while here we use deformation potentials measured for the hole states of the P BE.

The lattice mismatch $\frac{\Delta a}{a} = \frac{a_{e0} - a_{s0}}{a_{s0}}$ (where a_{e0} is the lattice parameter of the relaxed epilayer and a_{s0} is the lattice parameter of the substrate) is related to the difference in the growth-direction lattice parameter $\frac{\Delta a_{\perp}}{a} = \frac{a_{e} - a_{s0}}{a_{s0}}$ (where a_{e} is the out-of-plane lattice parameter of the strained epilayer) by the second order elastic constants of silicon. The extrapolated values of the elastic constants of silicon. The extrapolated values of the elastic constants at T=0 K are¹⁴ $C_{11} = 1.6772 \times 10^{11}$ Pa, $C_{12} = 0.6498 \times 10^{11}$ Pa, and $C_{44} = 0.8036 \times 10^{11}$ Pa. For an epitaxial layer of ²⁸Si grown on a ^{nat}Si substrate with (001) surface orientation, the lattice mismatch is given by¹⁵

$$\frac{\Delta a}{a} = \frac{C_{11}}{C_{11} + 2C_{12}} \frac{\Delta a_{\perp}}{a}.$$
 (1)

The biaxial strain causes the hole states to split by an amount^{16}

$$\Delta_{001} = 2 \left| b \frac{\Delta a_{\perp}}{a} \right| = 2 \left| b \frac{C_{11} + 2C_{12}}{C_{11}} \frac{\Delta a}{a} \right|, \qquad (2)$$

where b=-1.72(5) eV is the hole deformation potential for the P BE for [001] strain.¹⁷ Thus, we find that the lattice mismatch between ²⁸Si and ^{nat}Si at $T \sim 0$ K is 3.03(10) $\times 10^{-6}$ for ²⁸Si/^{nat}Si-1 and 3.01(12) $\times 10^{-6}$ for ²⁸Si/^{nat}Si-2. This corresponds to a change in the low temperature lattice parameter of silicon, referenced to a change of isotopic mass of 1 amu, of 2.77(9) $\times 10^{-5}$ for ²⁸Si/^{nat}Si-1 and 2.76(11) $\times 10^{-5}$ for ²⁸Si/^{nat}Si-2.

For an epitaxial layer of 30 Si grown on a nat Si substrate with (111) surface orientation, the lattice mismatch is given by 15

$$\frac{\Delta a}{a} = \frac{C_{11} + 2C_{12} + 4C_{44}}{3(C_{11} + 2C_{12})} \frac{\Delta a_{\perp}}{a},\tag{3}$$

and the biaxial strain causes a valence band splitting of¹⁶

$$\Delta_{111} = \frac{2}{\sqrt{3}} \left| d \frac{\Delta a_{\perp}}{a} \right|,\tag{4}$$

where d = -4.53(10) eV is the hole deformation potential for the P BE for [111] strain.¹⁷ Together with the observed 2.61(6) cm^{-1} splitting of the no-phonon P BE transition, this yields a lattice mismatch of $4.29(14) \times 10^{-5}$, which is significantly lower than the value of $5.60(5) \times 10^{-5}$ found by Wille et $al.^7$ for the same sample. This lattice mismatch for the ³⁰Si/^{nat}Si sample corresponds to a change in lattice parameter of $2.42(8) \times 10^{-5}$ for a change in isotopic mass of 1 amu. However, since the no-phonon P BE transition in the ^{nat}Si substrate was observed to split by 0.18(3) cm⁻¹, indicating a sharing of the strain between the epilaver and the substrate due to the finite thickness of the substrate, it may be more correct to take the effective epilayer splitting to be the sum of the two splittings. This would result in a lattice mismatch of $4.58(18) \times 10^{-5}$ for the ³⁰Si/^{nat}Si sample, but is still significantly lower than the value obtained by Wille et al.⁷ Referenced to a change of 1 amu, the low temperature change in lattice parameter would then be $2.59(10) \times 10^{-5}$, which is in agreement with the values found for the ²⁸Si/^{nat}Si samples.

IV. CONCLUSIONS

Using high-resolution PL, we have measured the splitting of the no-phonon P BE transition in samples of epitaxial ²⁸Si and ³⁰Si, grown on ^{nat}Si substrates, resulting from lattice mismatches as low as $3.01(12) \times 10^{-6}$. Values of the lattice mismatch were corrected for the two previously studied⁸ ²⁸Si/^{nat}Si samples, and results for ³⁰Si/^{nat}Si were presented. The change in lattice parameter referenced to a change of isotopic mass of 1 amu was found to be consistent between the ²⁸Si/^{nat}Si and ³⁰Si/^{nat}Si samples when the splitting of the P BE transition in the ^{nat}Si substrate for the ³⁰Si/^{nat}Si sample was taken into account. A discrepancy was found in the lattice parameter variation with isotopic mass between our results and the previous result of Wille *et al.*⁷ for the same 30 Si/^{nat}Si sample. The origin of this discrepancy is not known at this time, although the x-ray diffraction result of Wille *et al.* is more direct.

ACKNOWLEDGMENT

A.Y. and M.L.W.T. gratefully acknowledge the support of

- ¹P. Becker, D. Schiel, H.-J. Pohl, A. K. Kaliteevski, O. N. Godisov, M. F. Churbanov, G. G. Devyatykh, A. V. Gusev, A. D. Bulanov, S. A. Adamchik, V. A. Gavva, I. D. Kovalev, N. V. Abrosimov, B. Hallmann-Seiffert, H. Riemann, S. Valkiers, P. Taylor, P. de Bievre, and E. M. Dianov, Meas. Sci. Technol. **17**, 1854 (2006).
- ²C. P. Herrero, Solid State Commun. **110**, 243 (1999).
- ³S. Biernacki and M. Scheffler, J. Phys.: Condens. Matter **6**, 4879 (1994).
- ⁴P. Pavone and S. Baroni, Solid State Commun. 90, 295 (1994).
- ⁵A. Kazimirov, J. Zegenhagen, and M. Cardona, Science **282**, 930 (1998).
- ⁶E. Sozontov, L. X. Cao, A. Kazimirov, V. Kohn, M. Konuma, M. Cardona, and J. Zegenhagen, Phys. Rev. Lett. **86**, 5329 (2001).
- ⁷H.-C. Wille, Y. V. Shvydko, E. Gerdau, M. Lerche, M. Lucht, H. D. Ruter, and J. Zegenhagen, Phys. Rev. Lett. **89**, 285901 (2002).
- ⁸ A. Yang, H. J. Lian, M. L. W. Thewalt, M. Uemura, A. Sagara, K. M. Itoh, E. E. Haller, J. W. Ager III, and S. A. Lyon, Physica B **376-377**, 54 (2006).
- ⁹J. Hu, D. A. Harrison, V. A. Karasyuk, S. P. Watkins, M. L. W. Thewalt, I. C. Bassignana, D. J. S. Beckett, G. C. Hillier, and A.

the Natural Sciences and Engineering Research Council of Canada.

J. SpringThorpe, J. Appl. Phys. 84, 6305 (1998).

- ¹⁰D. Karaiskaj, M. L. W. Thewalt, T. Ruf, M. Cardona, H.-J. Pohl, G. G. Deviatych, P. G. Sennikov, and H. Riemann, Phys. Rev. Lett. **86**, 6010 (2001).
- ¹¹M. Cardona and M. L. W. Thewalt, Rev. Mod. Phys. 77, 1173 (2005).
- ¹² A. Yang, M. Steger, D. Karaiskaj, M. L. W. Thewalt, M. Cardona, K. M. Itoh, H. Riemann, N. V. Abrosimov, M. F. Churbanov, A. V. Gusev, A. D. Bulanov, A. K. Kaliteevskii, O. N. Godisov, P. Becker, H. J. Pohl, J. W. Ager III, and E. E. Haller, Phys. Rev. Lett. **97**, 227401 (2006).
- ¹³D. Karaiskaj, M. L. W. Thewalt, T. Ruf, M. Cardona, and M. Konuma, Solid State Commun. **123**, 87 (2002).
- ¹⁴A. George, in *Properties of Crystalline Silicon*, edited by Robert Hull (Institution of Electrical Engineers, London, 1999), p. 98.
- ¹⁵E. A. Caridi and J. B. Stark, Appl. Phys. Lett. **60**, 1441 (1992).
- ¹⁶G. L. Bir and G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1974).
- ¹⁷ V. A. Karasyuk, A. G. Steele, A. Mainwood, E. C. Lightowlers, G. Davies, D. M. Brake, and M. L. W. Thewalt, Phys. Rev. B 45, 11736 (1992).